The physical conditions from one moment to the next are stable: the rate of expansion, called the Hubble parameter, is nearly constant, and the scale factor of the universe is proportional to E^ht.
The "no-hair" theorem works essentially because the cosmological horizon is no different from a black-hole horizon, except for philosophical disagreements about what is on the other side.
In the late 1970s, Sidney Coleman applied the instanton techniques developed by Alexander Polyakov and collaborators to study the fate of the false vacuum in quantum field theory. Like a metastable phase in statistical mechanics—water below the freezing temperature or above the boiling point—a quantum field would need to nucleate a large enough bubble of the new vacuum, the new phase, in order to make a transition. Coleman found the most likely decay pathway for vacuum decay and calculated the inverse lifetime per unit volume. He eventually noted that gravitational effects would be significant, but he did not calculate these effects and did not apply the results to cosmology.
An experimental program is underway to further test inflation with more precise measurements of the cosmic microwave background. In particular, high precision measurements of the so-called "B-modes" of the polarization of the background radiation could provide evidence of the gravitational radiation produced by inflation, and could also show whether the energy scale of inflation predicted by the simplest models (1015–1016 GeV) is correct. In March 2014, it was announced that B-mode polarization of the background radiation consistent with that predicted from inflation had been demonstrated by a South Pole experiment, a collaboration led by four principal investigators from the California Institute of Technology, Harvard University, Stanford University, and the University of Minnesota BICEP2. Other potentially corroborating measurements are expected to be performed by the Planck spacecraft, although it is unclear if the signal will be visible, or if contamination from foreground sources will interfere with these measurements. Other forthcoming measurements, such as those of 21 centimeter radiation (radiation emitted and absorbed from neutral hydrogen before the first stars turned on), may measure the power spectrum with even greater resolution than the cosmic microwave background and galaxy surveys, although it is not known if these measurements will be possible or if interference with radio sources on earth and in the galaxy will be too great.
Dark energy is broadly similar to inflation, and is thought to be causing the expansion of the present-day universe to accelerate. However, the energy scale of dark energy is much lower, 10-12 GeV, roughly 27 orders of magnitude less than the scale of inflation.
Robert Brandenberger has commented on fine-tuning in another situation. The amplitude of the primordial inhomogeneities produced in inflation is directly tied to the energy scale of inflation. There are strong suggestions that this scale is around 1016 GeV or 10-3 times the Planck energy. The natural scale is naïvely the Planck scale so this small value could be seen as another form of fine-tuning (called a hierarchy problem): the energy density given by the scalar potential is down by 10-12 compared to the Planck density. This is not usually considered to be a critical problem, however, because the scale of inflation corresponds naturally to the scale of gauge unification.
In eternal inflation, regions with inflation have an exponentially growing volume, while regions that are not inflating don't.
Of course the law used is simple. The issue is that each time when a test is performed the predicted outcome is correct. In that sense the inflation theory predicts nothing because it is one of a kind. You cannot perform an "Big Bang" experiment using different inflation strategies.
Back to my home page Contents of This Document